Continuous Greedy Algorithm Submodular Maximization Subject to a Mtroid
Abstract
In this paper, we consider the problem of maximizing a non-submodular set function subject to a matroid constraint with the continuous generic submodularity ratio \(\gamma \). It quantifies how close a monotone function is to being submodular. As our main contribution, we propose a \((1-e^{-\gamma ^2}-O(\varepsilon ))\)-approximation algorithm when the submodularity ratio is sufficiently large. Our work also can be seen as the first extension of the adaptive sequencing technique in non-submodular case.
Keywords
- Non-submodular optimization
- Matroid constraint
- Submodularity ratio
- Adaptive sequencing
References
-
Altschuler, J., Bhaskara, A., Fu, G., Mirrokni, V., Rostamizadeh, A., Zadimoghaddam, M.: Greedy column subset selection: new bounds and distributed algorithms. In: Proceedings of ICML, pp. 2539–2548 (2016)
-
Alon, N., Spencer, J.H.: The Probabilistic Method, vol. 3, pp. 307–314. Wiley, New York (2008)
-
Balkanski, E., Rubinstein, A., Singer, Y.: An optimal approximation for submodular maximization under a matroid constraint in the adaptive complexity model. In: Proceedings of STOC, pp. 66–77 (2019)
-
Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. In: Proceedings of ICML, pp. 498–507 (2017)
-
Buchbinder, N., Feldman, M., Garg, M.: Deterministic (1/2+\(\varepsilon \))-approximation for submodular maximization over a matroid. In: Proceedings of SODA, pp. 241–254 (2019)
-
C\(\breve{\rm a}\)linescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40, 1740–1766 (2011)
-
Chekuri, C., Jayram, T.S., Vondrák, J.: On multiplicative weight updates for concave and submodular function maximization. In: Proceedings of ITCS, pp. 201–210 (2015)
-
Chekuri, C., Quanrud, K.: Submodular function maximization in parallel via the multilinear relaxation. In: Proceedings of SODA, pp. 303–322 (2019)
-
Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding for matroid polytopes and applications. In: Proceedings of FOCS, pp. 575–584 (2010)
-
Chen, L., Feldman, M., Karbasi, A.: Weakly submodular maximization beyond cardinality constraints: does randomization help greedy? In: Proceedings of ICML, pp. 804–813 (2018)
-
Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. In: Proceedings of ICML, pp. 1057–1064 (2011)
-
Edmonds, J.: Submodular functions, matroids, and certain polyhedra. Comb. Optim. 2570, 11–26 (2003)
-
Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45, 634–652 (1998)
-
Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: Proceedings of FOCS, pp. 570–579 (2011)
-
Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions-II. Math. Program. Stud. 8, 73–87 (1978)
-
Filmus, Y., Ward, J.: Monotone submodular maximization over a matroid via non-oblivious local search. SIAM J. Comput. 43, 514–542 (2014)
-
Harshaw, C., Feldman, M., Ward, J., Karbasi, A.: Submodular maximization beyond non-negativity: guarantees, fast algorithms, and applications. In: Proceedings of ICML, pp. 2634–2643 (2019)
-
Krause, A., Singh, A., Guestrin, C.: Nearoptimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235–284 (2008)
-
Lawrence, N., Seeger, M., Herbrich, R.: Fast sparse Gaussian process methods: the informative vector machine. Adv. Neural Inf. Process. Syst. 1, 625–632 (2003)
-
Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum of a submodular set function. Math. Oper. Res. 3, 177–188 (1978)
-
Rafiey, A., Yoshida, Y.: Fast and private submodular and \(k\)-submodular functions maximization with matroid constraints. arXiv:2006.15744 (2020)
-
Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of STOC, pp. 67–74 (2008)
-
Vondrák, J., Chekuri, C., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. In: Proceedings of STOC, pp. 783–792 (2011)
Acknowledgements
The first and second authors are supported by Beijing Natural Science Foundation Project (No. Z200002) and National Natural Science Foundation of China (No. 11871081). The third author is supported by National Natural Science Foundation of China (No. 11871081). The fourth author is supported by Natural Science Foundation of Shandong Province of China (No. ZR2019PA004) and National Natural Science Foundation of China (No. 12001335).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, X., Xu, D., Zhang, D., Zhou, Y. (2020). An Adaptive Algorithm for Maximization of Non-submodular Function with a Matroid Constraint. In: Chellappan, S., Choo, KK.R., Phan, N. (eds) Computational Data and Social Networks. CSoNet 2020. Lecture Notes in Computer Science(), vol 12575. Springer, Cham. https://doi.org/10.1007/978-3-030-66046-8_1
Download citation
- .RIS
- .ENW
- .BIB
-
DOI : https://doi.org/10.1007/978-3-030-66046-8_1
-
Published:
-
Publisher Name: Springer, Cham
-
Print ISBN: 978-3-030-66045-1
-
Online ISBN: 978-3-030-66046-8
-
eBook Packages: Computer Science Computer Science (R0)
Source: https://link.springer.com/chapter/10.1007/978-3-030-66046-8_1
0 Response to "Continuous Greedy Algorithm Submodular Maximization Subject to a Mtroid"
Post a Comment